The pandas series object
the base data structure of pandas is the sereis object,which is
designed to operate similar to a numpy array but also add index capablilities
import pandas as pd
from pandas import Series
s = Series([1, 2, 3, 4]) #create a four item
s
s[[1, 3]] #return a series with the rows with labels 1 and 3
1 2
3 4
dtype: int64
s = Series([1, 2, 3, 4],
index = ['a', 'b', 'c', 'd']) #create a item with index
s
a 1
b 2
c 3
d 4
dtype: int64
a 1
d 4
dtype: int64
s.index #it will show index
Index(['a', 'b', 'c', 'd'], dtype='object')
s.values #it will show values
array([1, 2, 3, 4])
dates = pd.date_range('2019-05-18', '2019-05-25')
dates
DatetimeIndex(['2019-05-18', '2019-05-19', '2019-05-20', '2019-05-21',
'2019-05-22', '2019-05-23', '2019-05-24', '2019-05-25'],
dtype='datetime64[ns]', freq='D')
temp_chennai = Series([36, 37, 36, 37, 37, 37, 37, 37],
index = dates)
temp_delhi = Series([34, 39, 41, 41, 41, 41, 41, 42],
index = dates)
36.75
40.0
temp_diffs_between_chennai_and_delhi = abs(temp_delhi - temp_chennai)
temp_diffs_between_chennai_and_delhi
2019-05-18 2
2019-05-19 2
2019-05-20 5
2019-05-21 4
2019-05-22 4
2019-05-23 4
2019-05-24 4
2019-05-25 5
Freq: D, dtype: int64
temp_diffs_between_chennai_and_delhi['2019-05-20']
5